
MAGπ!: The Role of Replication

in Typing Failure-Prone Communication

Matthew Alan Le Brun(B) and Ornela Dardha

University of Glasgow, Glasgow, UK
{matthewalan.lebrun,ornela.dardha}@glasgow.ac.uk

Abstract. MAGπ is a Multiparty, Asynchronous and Generalised π-
calculus that introduces timeouts into session types as a means of reason-
ing about failure-prone communication. Its type system guarantees that
all possible message-loss is handled by timeout branches. In this work,
we argue that the previous is unnecessarily strict. We present MAGπ!, an
extension serving as the first introduction of replication into Multiparty
Session Types (MPST). Replication is a standard π-calculus construct
used to model infinitely available servers. We lift this construct to type-
level, and show that it simplifies specification of distributed client-server
interactions. We prove properties relevant to generalised MPST: subject
reduction, session fidelity and process property verification.
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1 The Tale of the MAG(pie/π)

The magpie is a bird with deep ties to British folklore. The first known mention
of their counting for fortune telling dates back to 1780, where John Brand writes
what is thought to be one of the original versions of the magpie rhyme [6]:

“One for sorrow, Two for mirth, Three for a funeral, And four for a birth.”

We can imagine that the natural reaction of a person who spots a solitary magpie
is to scan the surrounding area for its companion. Alas, if no one is immediately
visible, the person desperately waits—hoping a second magpie comes their way.
But how long should one wait? The reality is that it is impossible to know the
difference between no magpie and a magpie that has not yet arrived. To computer
scientists, this is a well known impossibility result [2]. In the study of distributed
systems and fault tolerance, mechanisms must be employed to approximate the
impossibility result of determining whether a message has been lost or delayed—
e.g. by using a timeout. Hence, the computer scientist who spots a lonely magpie
knows to only wait some fixed amount of time before assuming that no other
magpie is coming and accepting their sorrowful faith. This philosophy is the
core principle of the process calculus MAGπ [17], a language designed to model
communication failures (via message loss) with a generic type system aiming to
provide configurable runtime guarantees.
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MAGπ is a Multiparty, Asynchronous and Generalised π-calculus, modelling
distributed communication over n-participant sessions. Its key features include
non-deterministic failure injection into the runtime of a program, asynchronous
communication via bag buffers (allowing for total message reordering), and a
generic type system capable of providing guarantees of runtime properties via
session types. Session types [13,15,26] are behavioural type systems allowing for
formal specification of communication protocols—their main benefit being that
they provide correctness guarantees on both protocol design and implementation.
Multiparty session types (MPST) [5,16,25] are a branch of session type theory
that aims to support protocols involving any number of participants with inter-
leaving communication. MAGπ builds upon a generalised form of MPST [4,25],
where protocols are defined by a collection of local types—the communication
patterns of individual participants’ perspectives—which should be exhaustively
checked (e.g. via model checking) to determine any properties they observe.
Novelties of MAGπ stem from how it embraces the impossibility result of dis-
tinguishing between dropped or delayed messages; its language and type system
use non-deterministic timeouts to model the assumption of failures. The type
system guarantees that all failure-prone communication is handled by a timeout
branch. In this work, we argue that the previous approach can, in some sce-
narios, be unnecessarily strict—resulting in needlessly more complex protocols.
Some configurations may wish to leave the handling of failures up to senders,
as opposed to recipients; these usually take the form of client-server interac-
tions where servers are designed to remain infinitely available. For example, if a
request to a web server were to drop, it is the client’s responsibility to re-issue
that request. We present an extension to MAGπ that better models infinitely
available servers and simplifies failure-handling for client-server interactions.

In the π-calculus [24], a standard construct often used for representing infinite
behaviour is that of replication. A replicated process is one which can be infor-
mally described as infinitely available. Naturally, the use of replicated processes
lends itself well to the modelling of client-server interactions. We demonstrate
how the use of replication in MAGπ can, not only better model infinitely avail-
able servers, but also simplify their protocols by relaxing the requirement of
failure-handling branches from every receive to only linear receives.

Example 1 (Type-level replication). We evolve the motivating example presented
in [17, Ex. 1], the ping protocol. Consider three participants: client c, server s,
and result channel r. Communication between c and r is reliable; whereas with
s is unreliable. The session types for a three-attempt ping in MAGπ! are:

Sr = &{c : ok . end, c : ko . end}

Sc = ⊕ s : ping .&















s : pong . ⊕ r : ok . end,

� . ⊕ s : ping .&







s : pong . ⊕ r : ok . end,

� . ⊕ s : ping .&

{

s : pong .⊕ r : ok . end,

� . ⊕ r : ko . end

Ss = !c : ping . ⊕ c : pong . end

Client c sends a message with label ping to server s (⊕ s : ping) and waits for
a pong response (&s : pong). If successful, an ok message is sent to results role
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r and the session is terminated for the client (end). Since communication with
the server is unreliable, receipt of the pong message is not guaranteed, and must
be handled by a timeout branch �. The client attempts to reach the server 3
times—if all attempts fail, it sends a ko message to r. The result role r waits for
either of the reliable responses from c, thus no timeout is defined. Server s is
defined as the replicated receive !c : ping . ⊕ c : pong . end, denoting its constant
availability to receive a ping request and send a pong response. We highlight the
absence of a failure-handling timeout branch in Ss; the server does not need to
change its behaviour if a client request fails. Furthermore, if the pong reply fails,
the server remains available to handle any number of retries from the client.
Thus, the use of replication has offloaded the handling of failures entirely onto
the client-side, has made the protocol more modular (since the type for s is now
agnostic of a client’s retry limit), and is simpler w.r.t. to the MAGπ specification.

Contributions. Concretely, our contributions are as follows:

1. MAGπ! Language: We present MAGπ! (Sect. 2), an extension of MAGπ

that does away with recursion in favour of replication as a better means of
modelling client-server interactions.

2. MAGπ! Types: We lift replication to type-level in Sect. 3. To the best of
our knowledge, this work serves as the first introduction of replication into
MPST. We improve upon the theory of MAGπ and show how three type
contexts (unrestricted, linear and affine) can be used to type—and simplify—
failure-prone communication in client-server interactions.

3. MAGπ! Metatheory: Sect. 4 expounds upon the metatheory of our type
system. We prove subjection reduction and session fidelity, and demonstrate
how they can be used for property verification. MAGπ! provides a failure
handling guarantee, ensuring all failure-prone communication is handled by a
timeout branch—a responsibility which servers offload to clients.

In Sect. 5 we conclude and give an account of related and future work. Details
of proofs and additional examples can be found in our technical report [18].

On Delegation and Language Simplification. This work builds upon a
subset of MAGπ [17] as our language only considers communication over a sin-
gle session. Reasons for this are: (i) to simplify notation for better readability
due to limited space; and (ii) to remove session fidelity assumptions. On the
latter, generalised MPST theory assumes communication over a single session
to prove session fidelity (a.k.a. protocol compliance) [25, Def. 5.3]. This is to
remove deadlocks that can occur due to incorrect interleaving of multiple ses-
sions. Effectively, the language subset we consider syntactically abides by the
assumptions of session fidelity by assuming all communication happens over a
single session and by removing delegation. We foresee no issues with extending
MAGπ! to multiple sessions, although this will only improve the number of safe
protocols that can be expressed and has no effect on verification of other prop-
erties. Lastly, replication in MAGπ! is a top-level construct only. This simplifies
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our type system at the cost of sacrificing expressivity of nested replication. The
type system can still express meaningful examples (e.g. load balancers), and we
intend to explore guarded and nested replication in future work.

2 Bird Songs

We present MAGπ!, an extension of MAGπ that replaces recursion with repli-
cated processes as its preferred means of reasoning about infinite behaviour.
Programs in MAGπ! represent distributed networks, consisting of concurrent
and parallel processes running on machines connected over some failure-prone
medium. We discuss how networks of various topologies are defined in Sect. 2.1.
Section 2.2 details the syntax and semantics of processes.

2.1 Topology

Distributed protocols typically consist of a number of participants (or roles)
representing physically separated devices, communicating over a failure-prone
network. We model such a setting by associating processes to uniquely identifi-
able roles, which communicate asynchronously through a bag buffer allowing for
total message reordering. Roles are related through a notion of reliability, mod-
elling physical locations of processes—i.e., reliable roles are ones that live on the
same physical device and thus are not susceptible to communication errors. A
formal account of networks, buffers and reliability is given below.

Networks. A program in MAGπ! models some distributed network N . These
networks consist of a parallel composition of processes, each representing specific
roles in the network. The formal description of a network is given by Definition 1.

Definition 1 (Networks). A network N is given by the following grammar:

N ::= p ⊳ P | N || N | B

where B is a message buffer; P is the process instruction; and p is a role name.

A process p ⊳ P consists of a uniquely identifying role name p, and process
instructions P . It is key to note that all processes, i.e., participants, of a net-
work are syntactically defined—thus, MAGπ! assumes a finite network size where
all participants are statically known. The || constructor denotes parallel com-
position of processes within a network, and B is its message buffer.

Buffers. MAGπ! models asynchrony through a bag buffer (semantics discussed
in Sect. 2.2). The buffer, Definition 2, serves two purposes. Firstly, it allows
for non-blocking (fire and forget) sends by acting as an intermediary where
messages wait until recipients are ready to consume them. Second, and important
to distributed communication, is that it models messages in transit over the
network and is thus the point-of-failure in our system.
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Definition 2 (Buffers). A message M is defined as M ::= 〈p → q, m〈ṽ〉〉,
i.e., a tuple identifying the source and destination of the message (p → q),
along with a message label and payload contents (m〈ṽ〉). A buffer B is a multiset
of messages M. Concatenating a message M with a buffer B, written B · M
corresponds to the multiset sum of B + {M}.

Reliability. A network is initialised with a reliability relation R (Definition 3),
defining roles which may communicate sans failure. All communication outwith
the reliability relation is considered failure-prone; this may be used to simulate
physical topologies, or to study a protocol at various degrees of reliability.

Definition 3 (Reliability). Given a network N , and set of roles ρ acting in N ,
the reliability relation R is a subset of (or equal to) {{p,q} : p,q ∈ ρ ∧ p 6= q}.
We write N :: R to denote a network N governed by reliability relation R. We
use shorthand N :: F to denote a fully reliable network, and N :: ∅ to denote a
fully unreliable network.

Example 2 (Load Balancer: Network). Consider a load balancer network with
server s, workers w1, w2, and client c. Assuming server-worker communication
to be reliable, the network may be configured as below:

s ⊳ Ps || w1 ⊳ Pw1
|| w2 ⊳ Pw2

|| c ⊳ Pc || B :: {{s,w1}, {s,w2}}

2.2 Processes

Definition 4 (Process syntax). The syntax for defining process instructions
P is given by the following grammar:

P ::= !i∈Ipi : mi(x̃i) . Pi | P | P | P

P ::= 0 | &i∈Ipi : mi(x̃i) . Pi [, � . P ′] | ⊕ p : m〈c̃〉 . P

c ::= x | v v ::= basic values

All branching terms assume I 6= ∅ and all couples pi : mi to be pairwise distinct.
Receiving constructs act as binders on their payloads.

A process P can either be a replicated server or a linear process. Replicated
receive !i∈Ipi : mi(x̃i) . Pi denotes a server constantly available to receive any of
a set of messages from roles pi with labels mi. The received payload is bound
to x̃i before pulling out a copy of Pi to run in parallel with the server. Par-

allel composition | is a runtime only construct at the process-level. It is
used to denote composition of linear continuations pulled out of a replicated
receive. Linear processes (P, Q, . . . ) consist of: (i) the empty process 0; (ii) lin-
ear receives &i∈Ipi : mi(x̃i) . Pi [, � . P ′], where a role waits for one of a set of
messages from some other roles pi with labels mi, binding the received pay-
load to x̃i before proceeding according to Pi; (iii) an optional nondeterministic
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Fig. 1. Network semantics.

timeout branch [, � . P ′] attached to linear receives to handle possible failure of
messages, instructing the process to proceed according to P ′; and (iv) linear
sends ⊕ p : m〈c̃〉 . P which sends a message towards p with label m and payload
c̃ before continuing according to P . A payload c is either a variable (x, y, . . . )
or some assumed basic value (integers, reals, strings, . . . ). We omit conditional
branching constructs such as if-then-else and case statements as they are routine
and orthogonal to our work (we assume them in examples).

Definition 5 (Network Semantics). Reduction on networks is parametric on
a reliability relation R. The reduction relation −→R is inductively defined by the
rules listed in Fig. 1, up-to congruence (rules below):

N1 || N2 ≡ N2 || N1 (N1 || N2) || N3 ≡ N1 || (N2 || N3) P1 | P2 ≡ P2 | P1

N || p ⊳ 0 ≡ N if p 6∈ roles(N ) (P1 | P2) | P3 ≡ P1 | (P2 | P3) P | 0 ≡ P

Network dynamics (Fig. 1) are divided into process and failure semantics.
A process sends a message via rule [P-Send] , which places the message in the
network buffer and advances the sending process to its continuation. Conversely,
processes receive messages (rule [P-Recv]) by consuming a message from the
buffer, advancing the process to its continuation and substituting bound payloads
with the received data. In a similar manner, servers may consume messages
from the buffer using rule [P-!Recv] ; instead of advancing the process, a copy
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of its continuation is pulled out and placed in parallel. This allows servers to
concurrently handle and receive client requests.

Message failure is modelled through rule [F-Drop] . We recall that buffers
model messages in transit, thus this rule may—at any time—drop a message
from the buffer if it is unreliable. It is key to note that failure in these seman-
tics is nondeterministic. A client may consume a message before it is dropped,
representing a successful transmission; or the message may be dropped before
consumed, representing the failure case. Reduction of timeout branches is also
nondeterministic since it is impossible to distinguish between dropped messages
(no magpie) and delayed messages (the magpie that has not yet arrived). There-
fore, rule [F-Timeout] can at any time reduce a waiting process to its timeout
branch, modelling either the handling of message failure or an incorrect assump-
tion of failure (i.e., message delay).

Example 3 (Load Balancer: Processes). We present the processes of our load
balancer. An output role o, which is reliable w.r.t. the client, has been added.

s ⊳ !c : req(x) . case flip() of

{

heads → ⊕w1 : req〈x〉 .0

tails → ⊕w2 : req〈x〉 .0

w1 ⊳ !s : req(d) . ⊕ c : ans〈f(d)〉 .0

w2 ⊳ !s : req(d) . ⊕ c : ans〈f(d)〉 .0

c ⊳ ⊕s : req〈42〉 . &







w1 : ans(y) . ⊕ o : output〈y〉 . 0

w2 : ans(y) . ⊕ o : output〈y〉 . 0

� . ⊕ o : err〈“Request timed out”〉 .0

o ⊳ &{c : output(out) .0, c : err(msg) .0}

Example 4 (Interactions with Failure: Processes). Now we demonstrate interac-
tions unique to our language which result from the use of timeouts as imperfect
failure detectors. Consider the following network snippet Nf :: ∅:

p ⊳ ⊕ q : m〈42〉 . P || q ⊳ &{p : m(x) . P ′, � . P ′′} || {〈p → q, m〈“Life is”〉〉}

These processes denote communication between two roles (p and q), where a
message labelled m with the string “Life is” has already been sent, and a second
message also labelled m is to be sent with payload 42. There are four possible
immediate reduction steps for this network: (i) role q consumes the message
in the buffer via [P-Recv] (the intended behaviour); (ii) role p places message
〈p → q, m〈42〉〉 in the buffer via [P-Send] , this may possibly result in message
reordering due to the bag buffer semantics; (iii) message 〈p → q, m〈“Life is”〉〉 is
dropped from the buffer via [F-Drop] , then q may either correctly assume failure
through a timeout, or if the sender is quick enough the message 〈p → q, m〈42〉〉
could still be received in its place; and (v) role q can incorrectly assume a failure
and timeout via [F-Timeout] even though message 〈p → q, m〈“Life is”〉〉 is in
the buffer. It is not difficult to see how items (ii) to (iv ) may lead to errors. Our
types and metatheory mitigate the occurrence of these possibly unsafe networks
by enforcing a safe design of protocols.
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3 Harmonisation

We now present the multiparty, asynchronous, and generalised type system for
MAGπ!. To the best of our knowledge, this is the first work to introduce repli-
cation and parallel composition for local types in MPST. We show how these
constructs lend themselves well to typing distributed client-server interactions.

3.1 Types

The syntax for MAGπ! types are given in Definition 6. Our type system does
away with tail-recursive binders (as is standard in MPST), instead opting for
a replicated receive type. The syntax distinguishes between different classes of
types. Namely, we present replicated-, session-, message- and basic-types—each
of which are used differently by the type contexts (Definition 7).

Definition 6 (Types). The syntax for MAGπ! types is given by:

R ::= !i∈Ipi : mi(B̃i) . Si

S ::= ⊕i∈Ipi : mi(B̃i) . Si | &i∈Ipi : mi(B̃i) . Si [, � . S′] | S | S | end

M ::= (p → q, m(B̃))

B ::= Int, Real, String,... (basic types)

Branching constructs assume I 6= ∅ and couples pi : mi to be pairwise distinct.
Replicated types R assume a pool of labels distinct from their continuations.

A replicated type R defines the protocol of a server. Type !i∈Ipi : mi(B̃i) . Si

denotes the receipt of requests labelled mi from pi carrying payload types B̃i

having continuation types Si. Replicated types never appear guarded and always
have linear continuations.

Session types S describe the protocol of a linear process. The selection and
branching types (⊕ and &) detail possible sends and receives, indicating direc-
tion and content of payloads. Branching types may optionally include a failure-
handling timeout branch � . S, where S details the protocol to employ upon

assuming a failure. As in processes, types also have a notion of runtime only
parallel composition, identifying the protocols of continuations pulled out of a
replicated receive. The end type denotes termination of a party’s protocol.

Message types M are used to type messages in a buffer. They record the
direction of communication, as well as the chosen branching label and types of
its payload. Lastly, B represents a range of assumed basic types.

Definition 7 (Contexts). Context Γ is unrestricted and maps variables to
basic types and roles to replicated types. Context ∆ is linear and maps roles to
session types. Context Θ is affine and holds a multiset of message types M .

Γ ::= ∅ | p : R, Γ | x : B, Γ ∆ ::= ∅ | p : S, ∆ Θ ::= {M1, . . . , Mn}
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Fig. 2. Context addition and splitting.

Updating and splitting operations are defined for ∆ by the rules in Fig. 2.
Context composition Γ, Γ ′ (resp. ∆, ∆′) is defined iff dom(Γ ) ∩ dom(Γ ′) = ∅
(resp. dom(∆) ∩ dom(∆′) = ∅).

Figure 2 defines two relations on ∆. Context addition joins two contexts by
performing a union on their contents (in the case that there are no conflicts
in their domains). If their domains are not unique, then the types are placed
in parallel, indicating a role employing multiple active session types (this is
explained in more detail after introducing context reduction, cf. Definition 8).
Context splitting extracts a piece of a larger context. Notably, types placed
in parallel may be split using this operation; in other cases splitting functions
similar to context composition.

Definition 8 (Context Reduction). An action α is given by

α ::= p⊕q:m | p,q:m | �p

read as (left to right) output, communication, and timeout. Context tran-

sition
α
−→ is defined by the Labelled Transition System (LTS) in Fig. 3. Context

reduction Γ ; ∆ ; Θ → Γ ; ∆′ ; Θ′ is defined iff Γ ; ∆ ; Θ
α
−→ Γ ; ∆′ ; Θ′

for some α. We write Γ ; ∆ ; Θ → iff ∃∆′, Θ′ s.t. Γ ; ∆ ; Θ → Γ ; ∆′ ; Θ′;
and →∗ for its transitive and reflexive closure.

Context reduction (Definition 8) models type-level communication by means
of the LTS in Fig. 3. Transition [∆-�] allows a role p with a defined timeout to
transition to the timeout continuation by firing a �p action. Transition [∆-⊕]
is a synchronisation action between a selection type and the type buffer Θ.



108 M. A. Le Brun and O. Dardha

Fig. 3. Type LTS

Effectively, a role with a send type can transition to its continuation by firing
any of the paths indicated in the selection (p⊕qk:mk) and adding the message
into the buffer context. On the receiving end, a role with a branch type can
consume a message from the type buffer to model a communication action via
transition [∆-C]. Communication with replicated servers is handled seperately
by transition [Γ -!C] . This rule allows a communication action to be fired when
a replicated type in Γ can receive a message in the buffer. This transition has
no effect on Γ (since it is an unrestricted context) and instead updates the
linear context ∆ with the continuation of the replicated receive. This is why
types require runtime parallel composition, and context updating and splitting
operations (Fig. 2), as multiple requests may be made to a replicated receive.

3.2 Typing Rules

Protocols defined in MAGπ! types are used in type judgements (Definition 9) to
check whether network implementations conform to their specifications.

Definition 9 (Typing Judgement). Type contexts are used in judgements as
Γ ; ∆ ; Θ ⊢ N , inductively defined by the rules in Fig. 4. To improve readability,
empty type contexts are omitted from rules.

Definition 10 (End Predicate). A context ∆ is end-typed, by:

∀i ∈ 1..n : Si = end

end(p1 : S1 · . . . · pn : Sn)

Typing rules [T-S], [T-Var], [T-Val] are auxiliary judgements typing linear
roles, variables and values. A role p of type S is typed by a linear context
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Fig. 4. Typing rules.

containing exactly a mapping of p to S; variables are typed to a basic type
if that mapping is held by Γ ; and values are typed to a basic type if they are
constants of that type. The empty process 0 is typed by [T-0] if the linear context
is end-typed (Definition 10), i.e., ∆ only contains roles mapped to end.

The send process p ⊳ qk ⊕ mk〈c1, . . . , cn〉 . P is well typed by [T-⊕] if: ∆ can
map p to a selection type containing the path chosen by the process; Γ verifies
all payloads with their types indicated in the session type; and the continuation
type can check the continuation process.

The receive process p ⊳ &i∈Iqi : mi(yi1, . . . , yin) . Pi[, � . P ′] is well typed by
[T-&] if: ∆ maps p to a branch with all the same paths contained in I; the
payloads and continuation types of every path in the branch can type all process
continuations Pi; and if a timeout process P ′ is defined, then it must be typed
under a timeout branch in the session type.
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Replicated receive p ⊳ !i∈Iqi : mi(yi1, . . . , yin) . Pi is typed using [T-!] in a
similar manner to [T-&] ; the type of p instead lives in the unrestricted context.

Network composition is typed by [T- || 1] and [T- || 2] . The former separates
the linear context to be used on processes and the buffer context to be used on
the network buffer; the latter splits context domains to type different roles in the
network. Process-level composition is typed via [T- | ] which utilises the context
splitting operation (Fig. 2) to separate parallel session types.

Network buffers are typed by repeated applications of [T-Buf] , which removes
messages from the buffer one at a time if they match a message type in the type
buffer. The empty buffer is typed under [T-Empty] , allowing for possible leftover
types in Θ. It is key to note that the buffer context is affine, as any message that
gets dropped at runtime will result in an unused message type.

Example 5 (Interactions with Failure: Types). Due to the generalised nature of
the type system, the type judgement alone is not enough to detect the errors
that may occur in Nf . This is because the type system does not provide syntactic
guarantees, but rather should be used in conjunction with exhaustive verification
techniques post protocol design (this is standard in generalised MPST [4,17,25]).
In fact, network Nf can be typed under the following contexts:

Γ ; p : ⊕ q : m(N) . S,q : &{p : m(String) . S′, � . S′′} ; Θ ·(p → q, m(String))

for some Γ, Θ, S, S′, S′′ assuming that P , P ′ and P ′′ are well typed using S,
S′ and S′′ respectively. Note that Γ and Θ can be non-empty since the former
is unrestricted and the latter is affine. In contrast, the linear context must be
exactly as stated above. We now need a way to determine this protocol as unsafe.

4 Songs About Songs

Unlike most session type theories, generalised MPST do not syntactically guaran-
tee any properties on the processes they type. Rather, they provide a framework
for exhaustively checking runtime properties on the type context, from which
process-level properties may be inferred. This seemingly unconventional app-
roach to session types was discovered to be more expressive than its syntactic
counterpart w.r.t. the amount of well-typed programs it can capture [25]. Fur-
thermore, its generalised nature allows for fine-tuning based on specific require-
ments of its applications. Informally, generalisation of the type system works
by proving the metatheory parametric of a safety property; i.e., all theorems
proved and presented assume that the type contexts are safe (Sect. 4.1). With
this assumption we present our main results in Sect. 4.2.

4.1 Type Safety

The technical definition of safety refers to the minimal requirements on types to
guarantee subjection reduction (cf. Sect. 4.2, Theorem 1). But what does safety
even mean for a distributed network with message loss, delays and reordering?



MAGπ! 111

It is impossible for our type system to adopt standard notions of safety which
may guarantee properties such as no unexpected messages or correct ordering of
messages, since the failures experienced at runtime can mitigate such guarantees.
Hence, the minimal guarantee of safety (Definition 11) in MAGπ! ensures that:

1. timeout branches are always (and only) defined for failure-prone communica-
tion between linear processes; and

2. if a message eventually reaches its destination, then the expected types of the
payload from the recipient should match the data carried on the message.

Definition 11 (Safety Property). ϕR is a safety property on contexts iff:

ϕ−R1

ϕR(Γ ; ∆ · p : &i∈Iqi : mi(B̃i) . Si ; Θ) implies ∀i ∈ I : {qi,p} ∈ R

ϕ−R2

ϕR(Γ ; ∆ · p : &i∈Iqi : mi(B̃i) . Si, � . S′ ; Θ) implies ∃k ∈ I : {qk,p} 6∈ R

ϕ−C

ϕR(Γ ; ∆ · p : &i∈Iqi : mi(B̃i) . Si[, � . S′] ; Θ · (qk → p, mk(B̃′)))

and k ∈ I implies |B̃k| = |B̃′| and ∀j ∈ 1..|B̃k| : Bkj = B′
j

ϕ−!C

ϕR(Γ ,p : !i∈Iqi : mi(B̃i) . Si ; ∆ ; Θ · (qk → p, mk(B̃′)))

and k ∈ I implies |B̃k| = |B̃′| and ∀j ∈ 1..|B̃k| : Bkj = B′
j

ϕ− →

∀∆′ : ϕR(Γ ; ∆ ; Θ) and Γ ; ∆ ; Θ → Γ ; ∆′ ; Θ′ implies ϕR(Γ ; ∆′ ; Θ′)

Conditions [ϕ-r1] and [ϕ-r2] ensure that timeouts are only omitted (resp.
defined) when communication is reliable (resp. unreliable). [ϕ-c] and [ϕ-!c]
require payload types to match for any communication; note that no message
is ever incorrectly delivered to a linear channel instead of a replicated (and
vice versa) because we assume that message labels for replicated receives are
not reused in their continuations. The last condition, [ϕ-!→] , requires all pos-
sible reductions of safe contexts to also be safe.

Example 6 (Interactions with Failure: Safety). The type contexts presented in
Example 5 do not abide by the conditions of ϕ∅ and thus are not safe. The types
do meet conditions [ϕ-r1] to [ϕ-!c] , but fail [ϕ-!→] . We observe the following
traces of the LTS:

·

Γ ; p : ⊕ q : m(N) . S,q : S′ ; Θ

Γ ; p : S,q : &{p : m(String) . S′, � . S′′} ;
Θ · (p → q, m(String)) · (p → q, m(N))

Γ ; p : ⊕ q : m(N) . S,q : S′′ ; Θ · (p → q, m(String))

p,q
:m

p⊕q:m

�p

✗

The transition over label p⊕q:m yields contexts in violation of [ϕ-c]. This exam-
ple highlights the impact of message labels in protocol design, as reusing labels
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may lead to nondeterministic receipt of messages. However, this does not mean
that messages with the same label can never be reused—it is possible for this
nondeterminism to still be safe w.r.t. Definition 11. E.g. consider the types in
Example 1 reusing labels ping and pong. This is safe because the protocol has
no dependency on receiving messages with the same label in a specific order.

Example 7 (Load Balancer: Types). We type our load balancer using the protocol
below in a judgement as s :Rs,w1 :Rw1

,w2 :Rw2
; c :Sc, o :So ; ∅ ⊢ N || ∅ where

N contains the processes from Example 3. The protocol observes the safety
property w.r.t. the reliability relation defined in Example 2, as well as with
reliability {{c, o}}, i.e., even if server-worker communication is unreliable.

Rs = !c : req(N) . ⊕

{

w1 : req(N) . end

w2 : req(N) . end

Rw1
= !s : req(N) . ⊕ c : ans(Real) . end

Rw2
= !s : req(N) . ⊕ c : ans(Real) . end

Sc = ⊕s : req(N) . &







w1 : ans(Real) . ⊕ o : output(Real) . end

w2 : ans(Real) . ⊕ o : output(Real) . end

� . ⊕ o : err(String) . end

So = &{c : output(Real) . end, c : err(String) . end}

4.2 Type Properties

Our main results are presented below (proof details in the technical report [18]).
Subject reduction ((Theorem 1) states that any process typed under a safe con-
text remains well-typed and safe after reduction (even in the presence of failures).
From this we obtain Corollary 1, stating that timeout branches are only omit-
ted from linear receives if communication is reliable; hence certifying that all
processes typed by safe contexts guarantee that no linear failure-prone commu-
nication goes unhandled. A key contribution of our work is that this corollary
is relaxed to linear processes instead of all processes, since we do not wish for
replicated servers to handle dropped client requests.

Theorem 1 (Subject Reduction). If Γ ; ∆ ; Θ ⊢ N with ϕR(Γ ; ∆ ; Θ)
and N →R N ′, then ∃∆′, Θ′ s.t. Γ ; ∆ ; Θ →∗ Γ ; ∆′ ; Θ′ and Γ ; ∆′ ; Θ′ ⊢
N ′ with ϕR(Γ ; ∆′ ; Θ′).

Corollary 1 (Failure Handling Guarantee). If Γ ; ∆ ; Θ ⊢ N with
ϕR(Γ ; ∆ ; Θ) and N →∗

R p ⊳ &i∈Iqi : mi(c̃i) . Pi | P || N ′, then ∀i ∈ I :
{p,qi} ∈ R.

Session fidelity (Theorem 2) states the opposite implication w.r.t. subjection
reduction, i.e., processes typed under a safe context can always match at least
one reduction available to the context.
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Theorem 2 (Session Fidelity). If Γ ; ∆ ; Θ → and Γ ; ∆ ; Θ ⊢ N with
ϕR(Γ ; ∆ ; Θ), then ∃∆′, Θ′, N ′ s.t. Γ ; ∆ ; Θ → Γ ; ∆′ ; Θ′ and N →∗

R N ′

and Γ ; ∆′ ; Θ′ ⊢ N ′ with ϕR(Γ ; ∆′ ; Θ′).

Using this result we can verify properties other than just safety. This is the
benefit of the generalised approach to MPST, where instead of forcing protocols
to abide by specific properties, types can be checked a posteriori to determine
any properties they observe. We demonstrate for deadlock freedom (Definition
12).

Definition 12 (DF: Networks). A network N is deadlock free, written df(N ),
iff N →∗ N ′ 6→ implies either

1. N ′ ≡ 0 || B; or
2. N ′ ≡ N ′

1 || · · · || N ′
n || B s.t. ∀i ∈ 1..n : N ′

i = pi ⊳ !j∈Jqj : mj(x̃j) . Pj.

A deadlock free network is one that only gets stuck when all processes reach
0, or when the only non-0 processes left in the network are servers. (Note, the
buffer is allowed to be non-empty because of message delays.) We define deadlock
freedom on types in Definition 13, stating that type contexts are deadlock free
if they only get stuck when the linear context is end-typed.

Definition 13 (DF: Types). Contexts Γ ; ∆ ; Θ are deadlock free, written
df(Γ ; ∆ ; Θ), iff Γ ; ∆ ; Θ →∗ Γ ; ∆′ ; Θ′ 6→ implies end(∆′).

Proposition 1 (Property Verification: DF). If Γ ; ∆ ; Θ ⊢ N with
ϕR(Γ ; ∆ ; Θ), then df(Γ ; ∆ ; Θ) implies df(N ).

Lastly, in Proposition 1 we state that deadlock free contexts imply deadlock
freedom in the networks they type, a result which follows from Theorem 2.

Decidability. Asynchronous generalised MPST are known to be undecidable in
general [17,25]. This stems from the fact that session types with asynchronous
buffers can encode Turing machines [3, Theorem 2.5]. However, we note that this
simulation relies on buffers with queue semantics and tail-recursion; whereas our
type system uses bag buffers and replication. Comparing the expressive power
of recursion and replication, previous studies show that for π-calculi with com-
munication of free names the two are equally as expressive [22]; whereas without
communication of free names (e.g. CCS) recursion is strictly more expressive
than replication [7]. Thus, we raise the question: “What is the expressive power
of asynchronous session types with bag buffers and replication?”, which we aim
to answer in future work.

For now, we present a predicate on type contexts which can be used to deter-
mine decidable subsets of the type system. This predicate, called trivially termi-
nating (Definition 14) is decidable and guarantees a finite traversable state-space,
thus implying decidability of safety (and subsequently property verification).
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Definition 14 (Trivially Terminating). We say Γ ; ∆ ; Θ are trivially
terminating, written tt(Γ ; ∆ ; Θ), iff ∀p ∈ dom(Γ ) : Γ (p) = !i∈Iqi : mi(B̃i) . S̃i

where ∀i ∈ I : qi 6∈ dom(Γ ).

Proposition 2 (Decidable Subset). For any contexts, tt(Γ ; ∆ ; Θ) is decid-
able and tt(Γ ; ∆ ; Θ) implies checking ϕR(Γ ; ∆ ; Θ) is decidable.

5 Encore

Modelling of failures and distributed communication is increasingly becoming
a more relevant and widely researched topic within the area of programming
languages. We highlight below some key related work, identifying the main dif-
ferences w.r.t. MAGπ!.

Affine session types [10,14,20] use affine typing to allow sessions to be pre-
maturely cancelled in the event of failure. They may be used in a similar fashion
to try-catch blocks, where a main protocol is followed until a possible failure
is met and handled gracefully. Similar in approach to MAGπ! is work by Bar-
well et al. [4], where generalised MPST theory is extended to reason about
crash-stop failures. Where MAGπ! uses timeouts, the previous uses a “crash”
message label which can be fed to a receiving process via some assumed failure
detection mechanism. Viering et al. [27] present an event-driven and distributed
MPST theory, where a central robust node is assumed and is capable of restarting
crashed processes. Chen et al. [11] remove the dependency on a reliable node,
instead using synchronisation points to handle failures as they are detected.
Adameit et al. [1] consider session types for link failures where default values
act as failure-handling mechanism to substitute lost data. MAGπ! models lower-
level failures than all of these works. Most of the aforementioned assume some
perfect failure-detection mechanism, whereas MAGπ! embraces timeouts as a
weak failure detector to show that some degree of safety can still be achieved.
Our theory is designed to operate at a lower level of abstraction, thus often pro-
viding weaker guarantees (e.g. consider our minimal definition of type safety) in
exchange for modeling a wider set of communication failures.

The adoption of replication in MPST theory is a novel contribution of this
paper. Replication in broader session types research has been utilised on numer-
ous accounts [8,9,12,23], specifically in work pertaining to Curry-Howard inter-
pretations of linear logic as session types, where the exponential modality from
linear logic !A is typically linked to replication from the π-calculus. Disregarding
our modeling of failure, the largest difference between these works and ours is
that we focus on a multiparty setting, whereas these theories are all based on
binary communication. Furthermore, we did not opt to approach our problem
from a logic-perspective, as is the main motivation behind this line of research.
Instead, we build upon already-standard generalised MPST theory, adapting it
towards our problem domain. We do note, however, that exploring a logical app-
roach to replication in MPST (and, in turn, to failures in session types) is an
interesting direction for future work. A more related use of replication in types
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is by Marshall and Orchard [19], where the authors discuss how non-linear types
can be used in a controlled fashion to type behaviours such as repeatedly spawn-
ing processes. This resembles the semantics of our type system and dynamic
definition of replication in our language, where replicated processes (resp. types)
can be reused as necessary to pull out linear copies of their continuations. The
mentioned work focuses on how to control the use of non-linear types and how
this can be utilised with session types in a functional programming language.
Our work, on the other hand, uses replication as a means of better modeling
client-server interactions and distinguishing between failure-prone communica-
tion that should be handled by the recipient or the sender.

On session types for client-server communication, research largely takes the
approach of linear-logic correspondences [8,21,23,28]. The topology these works
target are of binary sessions between a pool of clients and a single server. In Qian
et al. [23] a logic is developed, called CSLL (client-server linear logic), utilising
the coexponential modality ¡A. The subtle difference between this modality and
the exponential !A is that the latter represents an unlimited number of a type
A, while the former serves type A as many times as required according to client
requests, in a sequential yet still unordered manner. This is very similar to how
our type system operates, given that replicated receives only pull out copies of
continuations upon communication. Multiple requests induce non-determinism
into further reductions, in our work this is seen in the extension of parallel
types, which in Qian et al. [23] is observed through hyper-environments. The
difference in goal between the work of [23] (followed up by [21]) and ours, is that
the mentioned works focus on providing fixed static guarantees on the processes
they type (the former work with a focus on deadlock freedom, the latter on
weak termination) whilst we take a generalised approach. Our type system does
not force programs to be deadlock-free or terminating, but rather requires a
less restrictive safety property and allows verification of deadlock freedom and
termination to be done a posteriori—the trade-off being our weaker form of type
safety given the failure-prone nature of our setting.

To conclude, we presented MAGπ!, an extension to MAGπ made to use replica-
tion (instead of recursion) to express infinite computation—both at the language
and type levels. We did so with the aim of better modelling multiparty client-server
interactions, where servers are designed to remain infinitely available. Specifically,
we find type-level replication to be a clean mechanism for offloading the han-
dling of certain failures from the recipient to the sender—a practical procedure
for client-server interactions. We have generalised our theory by proving our meta-
theoretic results parametric of the largest safety property, allowing for more spe-
cific properties to be instantiated and used to verify runtime behaviours. As future
work, we plan to investigate more specific properties for verification through our
general type system. We aim to explore in detail the decidability of type-level
properties and if/how they may be restricted to obtain decidable bounds in cases
where they are not. Lastly, we wish to conduct a foundational study of the use of
replication in MPST—we anticipate their use for modelling client-server interac-
tions to have further benefit outwith a failure-prone setting.
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