
Coconut: Typestates for Embedded
Systems

Arwa Hameed Alsubhi(B) and Ornela Dardha

University of Glasgow, Glasgow, UK
a.alsubhi.1@research.gla.ac.uk, ornela.dardha@glasgow.ac.uk

Abstract. Typestate programming defines object states and actions to
improve software safety by ensuring operations on objects follow the
correct sequence. While its adoption in object-oriented languages has
increased, limitations persist in the features supported. Typestates are
particularly useful in embedded systems for operation sequencing, yet
examples in this area are scarce. We introduce Coconut, a C++ tool
that leverages typestate programming with templates for specifying type-
states and combining static type checking and dynamic analysis to ensure
proper class instance behaviour. It uniquely supports advanced pro-
gramming features like branching, recursion, aliasing, concurrency, and
optional typestate visualisation, facilitating idiomatic object-oriented
programming with inheritance. Illustrating its effectiveness, we apply
Coconut to actual embedded system projects, advancing the field by
introducing a comprehensive set of features and practical examples for
implementing typestate programming.

Keywords: Typestate · C++ · Embedded Systems

1 Introduction

Software development in critical sectors such as finance and healthcare neces-
sitates thorough testing and maintenance to protect sensitive data and ensure
human safety. A key aspect of this maintenance involves the use of protocols
that dictate the sequence of operations for objects and help reduce errors, as
highlighted by [49]. For example, in message-passing processes, establishing a
connection is a prerequisite before any message transmissions can occur. While
some protocols are straightforward, others in real-world systems are complex
and challenging, requiring ongoing research to refine enforcement approaches.

Typestate analysis is one such approach that could effectively enforce specific
sequences of operations on objects, thus managing and reinforcing protocols, as
discussed by [54]. To illustrate further, consider the LightSwitch class shown in
Fig. 1. The protocol dictates that the LightSwitch must not be turned on if it is
already in the on state, nor turned off if it is in the off state. If the object ls in
Fig. 2 attempts to call SwitchOn() twice without an intervening SwitchOff(),
typestate analysis statically detects and prevents this protocol violation. For
more details on how this analysis is enforced in Coconut, refer to Sect. 2.

c© IFIP International Federation for Information Processing 2024
Published by Springer Nature Switzerland AG 2024
I. Castellani and F. Tiezzi (Eds.): COORDINATION 2024, LNCS 14676, pp. 219–238, 2024.
https://doi.org/10.1007/978-3-031-62697-5_12

https://eapls.org/pages/artifact_badges/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-62697-5_12&domain=pdf
http://orcid.org/0009-0008-8033-1251
http://orcid.org/0000-0001-9927-7875
https://doi.org/10.1007/978-3-031-62697-5_12


220 A. H. Alsubhi and O. Dardha

Fig. 1. LightSwitch Class Fig. 2. LightSwitch Client Code

Leveraging the advantages of typestate, several new programming languages,
such as Vault, Fugue, Plaid, and Obsidian, have been developed with a focus
on integrating typestate as a key feature, as detailed in [18–20,51]. Addition-
ally, tools like Mungo, Java Typestate Checker (JaTyC), and Papaya have been
applied to object-oriented programming languages, such as Java or Scala, to
facilitate typestate checking [5,10,32,34,41]. Although these projects leverage
typestate checking to support various programming features, they still lack some
critical capabilities. For example, most of these projects do not support inheri-
tance, with the notable exception of JaTyC, which fully supports it [5]. Further-
more, many typestate-based projects either eliminate aliasing, such as Mungo
[34], or impose limitations on it, like Plaid [3].

These limitations arise from several factors. For instance, aliasing can com-
plicate the management of object typestates. This is because changes made by
one alias can affect the state of the object as seen by another alias, leading
to inconsistencies and undermining the accuracy of the object’s current state
analysis. Similarly, implementing typestate in programs that use inheritance is
challenging because subclasses may introduce new methods and behaviours that
do not align with the parent class’s typestate. This can lead to a situation where
the subclass’s unique behaviours need separate enforcement mechanisms, adding
complexity to the system design. To address these complexities, many typestate
initiatives selectively focus on features that align with their core objectives,
thus limiting their scope to ensure practical implementation that accommodates
diverse needs. This project aims to provide such support by focusing on essential
features that enhance the application of typestates across various scenarios.

In this paper, we examine the application of typestate analysis in embedded
systems, such as medical devices, which require precise sequences of operations
for reliable functionality. Given this requirement, typestate tools become valu-
able for addressing these operational needs in such systems. However, despite
the growing interest in formal methods for verifying and validating embedded
systems, such as [12,13,29–31], there is a noticeable lack of research on types-
tates in these systems. Formal methods such as Extended Finite State Machine
(EFSM) [2] and Event-B [1] use states and events for system modelling. EFSM
offers detailed behaviour modelling at a lower level, while Event-B supports
multi-level system modelling. However, their complexity and resource demands



Coconut: Typestates for Embedded Systems 221

pose challenges for systems with limited resources and constrained update pro-
cesses. Typestate as mentioned in [40], offers a practical approach to behaviour
representation and the ability to enhance code modularity. This modularity can
improve the readability and maintainability of the codebase, thus simplifying
coding and updating workflows [35].

This paper presents the Coconut tool, a C++ library with typestates. We
selected C++ for this implementation due to its prominence in embedded sys-
tems and proven effectiveness in high-performance applications, as evidenced
by [12,26,38,52]. C++20’s brief inclusion of contract attributes-later removed-
highlighted a gap in verifying object behaviour [16,46]. Typestates could address
this, yet integrating them into C++ is challenging due to static reflection lim-
itations and C++’s complex library creation process [11,55]. The existing Pro-
tocolEncoder (ProtEnc) library offers typestate analysis but is limited by per-
formance issues and restricted feature support, as highlighted in [53]. Our tool
overcomes these limitations by applying distinct approaches in checking and
analysing and offers more features beyond ProtEnc.

Contributions. The key contributions of this paper are as follows:

– Typestate Analysis: Coconut provides typestate templates for protocol
definition and supports these with a comprehensive analysis to ensure class
instances adhere to their protocols. Detects violations at compile-time and
incorporates run-time assertions for enhanced robustness (Sect. 2).

– Embedded Systems Case Studies: We showcase the application of
Coconut through case studies, such as the LightSwitch and Pillbox. The Pill-
box case study is grounded in the actual deployment of the Pillbox system in
a healthcare setting [12] (Sects. 2 and 3).

– Comprehensive Programming Feature Set: Coconut integrates a broad
range of programming features, including branching, recursion, aliasing, con-
currency, inheritance, and typestate visualisation. Coconut is the first tool to
integrate these features comprehensively (Sect. 3).

– Evaluation Study: We conducted a comparative evaluation to benchmark
Coconut’s performance against three distinct case studies, each implemented
in C++ and evaluated across different metrics (see Sect. 4). Furthermore, we
tested each Coconut example to ensure its effectiveness in identifying bugs
and enforcing typestate.

2 The Coconut Tool

This section explores the integration, system overview, template mechanics, and
static and dynamic analysis capabilities of the Coconut tool.

2.1 Integration, Compatibility, and Usage

Coconut is a C++ library tailored for C++20 and later versions, offering spe-
cialised functionalities. It utilises CMake [33], a well-known cross-platform build



222 A. H. Alsubhi and O. Dardha

Fig. 3. Coconut Typestate Checking Process

system, to simplify the compilation process across various operating systems and
environments. This integration facilitates compatibility with various external
dependencies, such as the Boost library [15]. Coconut offers flexible integration
into C++ projects, allowing developers to selectively include its header file based
on their needs, thus enabling or bypassing its features accordingly. Comprehen-
sive instructions for its installation and usage are available in its repository1. The
library implements a type-safe state machine using template metaprogramming
[43], Boost.Hana [14] and functional programming principles. It provides mech-
anisms to define states, transitions, and rules for a typestate, along with utilities
for tracking instances and visualising the state machine’s structure. This app-
roach is particularly useful for compile-time checks and enforcing correct state
transitions in a type-safe manner.

2.2 System Overview

Upon integrating the Coconut library, developers can specify behavioural pro-
tocols for their class objects using the provided templates. The system parses
and analyses these templates to collect information about all possible states
and permitted behaviours. As explained in Fig. 3, This data is passed to the
TypestateClassConnector, which establishes a linkage between each class and
its corresponding typestate, ensuring compliance with defined typestate guide-
lines throughout the codebase. The State Manager class is responsible for type-
state verification. It manages this by wrapping Pointers to Member Functions
(PMFs) that are used to call class functions. These PMFs are accessed using
operators like .* and ->*. The State Manager acts as a gatekeeper, employing
a constexpr template function to check whether an object is in the correct state
before it allows a function call to proceed. It verifies against the typestate rules
stored in a tuple. If the function call aligns with the rules, the State Manager
updates the object’s state in the tuple to reflect the new state. If a function call
violates the rules, the checking process will detect this and stop the compilation
of the program.

1 https://zenodo.org/records/10853974.

https://zenodo.org/records/10853974


Coconut: Typestates for Embedded Systems 223

Fig. 4. LightSwitch Typestate

2.3 Templates and State Management in Coconut

Coconut utilises the concept of enumeration by leveraging either built-in enu-
meration or the BETTER ENUM library. The BETTER ENUM library [6] enhances enum
functionality by enabling conversions to and from strings, which aids in type-
state visualisation. Moreover, it offers compile-time validation capabilities not
available with built-in enums, often utilised in examples within our tool. Using
templates, the typestate specification is defined as a Finite State Machine (FSM).
This FSM is modelled through a template-based struct and implemented via
template meta-programming [43], which allows for flexibility in accommodating
various data types. This versatility enables the management of diverse classes,
such as File and Sound, within the Coconut tool. States and transitions are
expressed as follows:

– Typestate Template: This template serves as the container for the FSM,
utilising variadic templates [28] to accommodate an arbitrary number of state
transitions.

– State: Each state transition is modelled as follows:
• Current State: Indicates the state the object is currently in.
• Pointer To Allowable Function: Defines the member function pointer

that is allowed to transit the object from the Current State to the
Next State.

• Next State: Specifies the state to which the object transitions after the
function is called.

– Wrapper Templates for State Transition Management: Each class
is connected with the Typestate Template and wrapped by a manager
that embeds typestate logic directly into the class structure. This wrap-
per generates code that uses the tuple stored in Typestate Template to
check typestate configurations within the Coconut framework. Upon instan-
tiation, each class begins in a state defined by the current state in the
Typestate Template. This ensures that the object begins its life-cycle from
the correct state. The process of state transition checking is initiated when-
ever a state-changing method is called. If the transition is valid according to
the Typestate Template, the method is called, moving the object to its next
state. If a transition is invalid, static assertions prevent compilation, while
runtime assertions manage function calls in dynamic behaviours.

To demonstrate how templates function within the Coconut tool, consider
the LightSwitch example mentioned in Sect. 1, as illustrated in Fig. 1. Initially,



224 A. H. Alsubhi and O. Dardha

the typestates of the LightSwitch are defined in the Typestate Template. This
includes specifying permissible states and transitions between them as seen in
Fig. 4. Following the specification, a wrapper transforms the LightSwitch class to
incorporate these typestates. This setup integrates the logic necessary for state
transitions directly into the structure of the class. In Fig. 2, upon instantiation,
the ls is set to the OFF state, as defined by the first state entry in the Type-
state Template. When the SwitchOn() method is called, Coconut checks the
typestate configurations stored in the tuple to verify if the transition to the ON
state is permissible using SwitchOn(). If the transition is valid, the ls moves to
the ON state and the program compiles successfully. If the ls in Fig. 2 in line 4
calls SwitchOn() the compilation will stop, enforced by static assertions.

2.4 Static and Dynamic Analysis in Coconut

In the Coconut tool, the code analysis starts with static analysis during the
compilation phase. This involves checking that the code behaves correctly when
typestate-related functions are called within if-constexpr conditions or loops.
Static analysis ensures that these calls correctly manage state transitions based
on the compile-time conditions and the defined rules, preventing potential logic
errors before the program runs. Additionally, static analysis includes aliasing
analysis, which tracks how multiple references to the same object might impact
the object’s state during these function calls when executed within a monolithic
context. It also examines inheritance structures to ensure that derived classes
adhere to the state management rules of their base classes.

After successful compilation, dynamic analysis takes over during code execu-
tion to manage conditions not addressed during the static phase. This includes
handling if-else branches that respond to runtime conditions involving changes
in internal state or effects of predefined variables. For example, a vending
machine may enter a maintenance state triggered by internal diagnostics, which
is checked at runtime. The dynamic aliasing part of the analysis examines how
aliases affect an object’s state through function calls in dynamic segments of the
program, using a compositional approach. This analysis also supports concurrent
method calls across multiple threads, ensuring alignment with type states.

Limitations and Future Work. Coconut’s current limitations include a lack
of support for dynamic data structures like arrays and linked lists, restricting its
application in complex data manipulation. It also lacks full support for direct
interactions with users or real-time data from external systems, such as process-
ing live data feeds from sensors or streaming data from online services. Addition-
ally, advanced concurrency challenges such as synchronisation, race conditions,
and deadlocks. These areas are targeted for enhancement in future updates.

3 PillBox Case Study

This section demonstrates how our tool can be applied to a real-world sce-
nario using the smart PillBox, an embedded medical system designed to ensure
patients take their medications on time, as detailed in [12].



Coconut: Typestates for Embedded Systems 225

Fig. 5. PillBox Class

3.1 PillBox Original vs Coconut Version

Remark 1. Before discussing the implementation of PillBox in Coconut, it is
important to review the original deployment as described in [12] and the iden-
tified issues. PillBox is a programmable device that allows for the addition
or removal of modular drawers and was originally modelled using the Asmeta
framework [24], a model-based engineering platform which uses four hierarchical
Abstract State Machines (ASM) to define system behaviours. Since ASM mod-
els cannot be executed directly on the hardware, translating these models into
C++ code with the tool Asm2C++ [23] was crucial. The translated C++ code



226 A. H. Alsubhi and O. Dardha

is used for debugging and validating system performance, which is unachievable
with ASM alone. This translated code has significant hardcoding and extensive
conditional statements, reflecting the complexities of the original ASM code and
making it challenging to trace execution and reason about the code’s behaviour.
Furthermore, a new ASM model is required each time a drawer is added to the
system, which currently only supports up to three drawers, leading to inefficien-
cies. Comparing the Coconut tool implementation with this setup is essential to
understand how each manages the system. A small fragment of the code from
the original implementation can be found in Appendix A.

Fig. 6. PillBox State Machine

Typestate Solution: In response to
challenges identified in the original Pill-
Box implementation [12], we propose a
solution based on typestates facilitated
by the Coconut tool. Typestates offer
a structured framework for modelling
PillBox behaviour, effectively addressing
these challenges. By utilising typestates
within Coconut, we establish a unified
framework for the PillBox, regardless of
the number of drawers. Unlike the original
approach, which required separate mod-
elling and validation for each level of the
hierarchical structure using hardcoding,
typestate specifications are defined once
for the entire PillBox. This process simpli-
fies the checking and verification of client
code, reducing the complexity and redun-
dancy associated with modelling and vali-
dating multiple scenarios compared to the
original implementation using ASM, thus
making it easy to trace execution and rea-
son about the code’s behaviour.

Now, we will demonstrate how Coconut implements typestates for the smart
PillBox and see how typestate checking ensures the system functions correctly
as illustrated in the state machine (Fig. 6). In the PillBox class (Fig. 5), multiple
drawers hold pills with specific intake times, and a RedLed, initially off. Each
drawer is represented as a class (Fig. 7), detailing the pill and its intake time.
Similarly, the RedLed in the PillBox class is also a class (Fig. 8).

PillBox Typestate Description. Each PillBox instance starts in the (Idle)
state. Upon activation, the RedLed switches on to indicate the time to take a
pill from a specific Drawer. The RedLed remains illuminated until the patient
opens the Drawer and retrieves the pill. After pill retrieval, the RedLed blinks to
close the Drawer, then switches off. This sequence repeats for each Drawer when
its corresponding pill time arrives. This typestate is expressed using State and



Coconut: Typestates for Embedded Systems 227

Typestate Template, depicted in Fig. 9, and represented as an FSM in Fig.
6. To demonstrate, in Fig. 10, the pillbox1 instance of the PillBox class is
set to the Idle state when is created in line 12, as defined by the first state
entry in the Typestate Template. When the Activate PillBox() method
is called on pillbox1, Coconut checks the typestate configurations stored in
the tuple to verify if the transition to the Activated state is permissible using
Activate PillBox(). If the transition is valid, pillbox1 moves to the Activate
state, and the program compiles successfully. However, if pillbox1 attempts
to call Activate PillBox() again after line 16, the compilation will stop,
enforced by static assertions. Note that methods outside the state machine, like
addDrawers, are considered “anytime” methods and are not subject to typestate
checks.

Fig. 7. Drawer Class Fig. 8. RedLed Class

3.2 Discussion of Programming Features

This section outlines Coconut’s key features, including branching, recursion,
aliasing, concurrency, and inheritance. These features play roles in decision-
making, task simplification, maintaining consistent object states, supporting
multi-threaded interactions, and enhancing code scalability. They are useful for
developing maintainable software for complex systems like the smart PillBox,
as illustrated by [21], which provides insights into various scenarios where such
features are utilised in software development for complex systems.

Branching and Recursion. Coconut supports branching in programming,
enabling objects to follow multiple paths within a program. For instance,
as demonstrated in Fig. 10, when the pillbox1 instance is in the (Active)



228 A. H. Alsubhi and O. Dardha

Fig. 9. PillBox Typestate Specification

Fig. 10. PillBox Client Code

state, it can selectively choose which method to invoke. It can proceed
with Process System Time() as shown in line 18, transitioning to the
(Pill Time On) state, or it can call Deactivate PillBox() to transition to the
(NonActive) state. Coconut also supports loops, as illustrated in Fig. 10, where
the for loop in line 2 continuously turns on a red LED with Switch ON() and
signals when to take a pill, repeating this process until the incrementer reaches
5.

Unrestricted Aliasing. Coconut analyses relationships between different vari-
ables and objects in the program. For instance, it analyses the relationships



Coconut: Typestates for Embedded Systems 229

between pillbox1, ptr pillbox1 as seen in line 13 in Fig. 10, and any other
variables that may reference the same pillbox1 and aliases are directly linked
to their respective instances and states. When pillbox1 or ptr pillbox1 in
lines 16 or 19 calls a function, Coconut checks this data against the predefined
typestate. If it conforms, Coconut updates the instance’s state, and this change
is then reflected across all aliases.

Concurrency. In C++, concurrency and threading are managed using the
std::thread class, which facilitates the execution of functions, function objects,
or lambda expressions. Wrappers as discussed in Sect. 2, encapsulate typestate on
objects. For concurrency, these wrappers use hidden mutexes to enforce exclu-
sive execution of certain code blocks by one thread at a time, with runtime
checks ensuring adherence to typestate for consistent state transitions. Consider
the scenario in Fig. 10, where the main function executes two threads with dis-
tinct operations, as detailed in Fig. 11. Here, Coconut integrates mutexes within
wrappers, employing runtime checks to enforce adherence to specific typestate
rules, thus preventing state inconsistencies. For instance, if thread t1 initiates
system activation, it acquires a mutex, blocking thread t2 from starting until t1
completes and releases the mutex. Conversely, if t2 starts first, encountering a
non-activated system due to t1 not having run yet, t2’s execution halts.

Inheritance. Coconut enforces typestate rules across superclasses and sub-
classes in line with the Liskov Substitution Principle (LSP) [36], ensuring that
subclasses can seamlessly replace superclasses without impacting program func-
tionality. It analyses four inheritance scenarios to ensure methods and behaviours

Fig. 11. Concurrency Example



230 A. H. Alsubhi and O. Dardha

conform to typestate requirements. Particularly in scenarios where both classes
have typestates, Coconut ensures that subclasses adhere to the specifications of
both their own class and their superclasses, as elaborated in the repository.

3.3 Coconut vs. State-of-the-Art Typestate-Based Tools

Coconut retains all previously discussed features and introduces an optional
typestate visualisation feature. This feature helps developers represent types-
tates diagrammatically, improving clarity and understanding. Developers can
use the Visualise TypestateTemplate<enum> function which uses Graphviz
[27] to visualise protocols and create diagrams, such as the one shown in Fig. 6.
Before concluding this section, we summarise our programming feature contribu-
tions and compare them with other typestate-based tools, as shown in Table 1.
Compared to other typestate-based projects, Coconut manages to provide sup-
port for all discussed features, unlike other tools that lack other features.

Table 1. Coconut vs typestate-based Projects Features. A checkmark in the table indi-
cates the presence of a feature. Most of these features are implemented at compile time.
However, features like Unrestricted Aliasing and Concurrency are offered at runtime,
except for Concurrency in JaTyC21, which is offered at compile time.

Branching Recursion Inheritance
Safe

Aliasing
Unrestricted

Aliasing Concurrency Visual

Mungo � �
JaTyC21 � � � �
JaTyC22 � � �
DSI Rust � �
Plaid � � � �
Clara � �
Plural � � �
Papaya � � � �
Accumulation � � �
Fugue � � � �
Obsidian � � �
ProtEnc � �
Coconut � � � � � � �

4 Evaluation Study

Benchmarks and Metrics. In our evaluation study, we aim to assess the
performance of the Coconut tool, which applies typestate analysis, by comparing
it with three distinct case studies. Initially, we evaluate the performance using
a straightforward example of a LightSwitch embedded system as a baseline [8].
Next, we examine the PillBox embedded system, previously discussed in Sect. 3,



Coconut: Typestates for Embedded Systems 231

which involves hardcoding and utilises an Abstract State Machine [12]. Finally,
we compare Coconut’s performance against an existing typestate-based tool,
ProtEnc, implemented in C++ [53]. We have selected four key performance
metrics for this analysis, which are:

– Compilation Time (CT): Measures the time required to compile code.
– Run Time (RT): Measures the duration of program execution.
– Memory Usage (MU): Assesses the amount of execution memory usage.
– Code Complexity: Evaluates the complexity of the source code.

These metrics are selected to assess the software’s efficiency, reliability, and main-
tainability, aspects that are particularly important in embedded system envi-
ronments. Compilation and execution times reflect speed and efficiency, memory
usage helps gauge resource optimisation, and code complexity provides insight
into maintainability. These selected measures align with standard practices in
embedded systems [42,45,48].

Process. We used a Python script with libraries like pandas, lizard, openpyxl,
time, psutil, and Libclang17dev [17,25,37,39,44,56] to measure metrics such as
compile time, runtime, and memory usage. Each script ran 100 times to find
average results. For code complexity, we checked the number of tokens, lines of
code (NLOC), and Cyclomatic complexity. Notably, the original PillBox system
heavily relied on runtime hardcoding and checks, using the Arduino library [4] to
monitor data from an embedded device like system time and the RedLed status.
To ensure a fair comparison with Coconut, which mainly checks at compile time
without direct device access, we adjusted the PillBox to move all checks to compile
time. For data collection, we tested the modified system’s compile time over
100 iterations, each processing unique parameters such as pill names, times (in
hours and minutes), and the red LED status, mimicking real-world operations.
We applied the same testing approach to the Coconut PillBox version to align
with our goal of evolving Coconut into a typestate monitoring tool.

Results, Conclusion and Future Improvement After experimentation, as
depicted in Fig. 12, we observed that Coconut incurs a higher compile-time
overhead compared to other benchmarks. However, it exhibits slightly better
performance in terms of runtime and memory usage. In assessing code complex-
ity, Coconut achieves lower values for Cyclomatic complexity, NLOC, and token
count than the other benchmarks. These lower complexity metrics suggest that
code written with Coconut might be simpler and less complex, which can make
it easier to understand and maintain. Note that the results for Pillbox in the table
refer to the modified version. Additionally, the effectiveness of Coconut in iden-
tifying bugs was assessed through case studies, with detailed findings available



232 A. H. Alsubhi and O. Dardha

Fig. 12. Metrics Results

in the Coconut repository. We plan to broaden our evaluation in the future to
include more comprehensive case studies in embedded systems and to incorpo-
rate additional metrics and expand testing to include more complex scenarios.

5 Conclusion, Related and Future Work

Related Work. Typestate was introduced by Strom and Yemini [50] to enhance
program reliability through compile-time semantic checks. This foundational
concept focused on ensuring correct variable declaration and initialisation, set-
ting the stage for future developments in typestate programming.

In the development of typestate in programming languages, projects like
Vault [19], Fugue [20], and Plaid [3,51] played pivotal roles. These projects
expanded typestate into programming languages or language extensions, allow-
ing the definition of resource protocols or class states. This approach mirrors the
strategies seen in Rust’s Typestate Pattern Tool [47] and the ProtocolEncoder
(ProtEnc) in C++ [53], which prioritise augmenting existing languages. Fur-
thermore, the concept of session types, as explored in tools like Mungo, JaTyC,
and Papaya [5,32,34], emphasises separate object protocol definitions and static
class instance checking against these protocols.

Aliasing, where multiple references can be assigned to a single object, is
treated differently across various typestate-oriented projects. Projects like Vault
[19], Fugue [20], Plaid [3,51], and Plural [9] have developed unique constructs
and modes to manage aliasing. Vault uses adoption and focus, creating lin-
ear and non-linear references to control access to objects. Fugue distinguishes



Coconut: Typestates for Embedded Systems 233

between NotAliased and MayBeAliased modes, directly addressing the aliasing
issue. Plaid and Plural introduce access permissions, blending aliasing and access
control for the management of object references.

Supported Programming Features. Branching and recursion are seamlessly inte-
grated into tools like Mungo [34] and Papaya [32], using language-specific state-
ments for recursion management. Concurrency is uniquely tackled in typestate
tools. Plaid [3] prioritises access permissions, while JaTyC21 [41] focuses on
tracing state changes for safe concurrent computations. Inheritance, crucial in
object-oriented programming, is addressed by JaTyC22 [5] and Fugue [20], allow-
ing subclasses to extend superclasses’ typestates.

Embedded Systems. Formal methods are essential in the verification and vali-
dation of embedded systems in healthcare and robotics. Bonfanti et al.’s sys-
tematic literature review highlighted this necessity in medical software devel-
opment, ensuring human safety [13]. Such methods include the use of UML-B
state machines and class diagrams to model and analyse the HD Machine for
treating kidney failure [29], evaluating various states and transitions essential
to its operation. In robotics, finite state machines have been demonstrated as
effective approaches for controlling robot behaviour and performance [7,22]. For
autonomous vehicles, a model integrating finite-state machine and reinforce-
ment learning methods is highlighted, crucial in navigating cut-in situations
[31]. Another model employs FSM to address the parking challenges faced by
autonomous vehicles, utilising sensors and system requirements [30].

Conclusion and Future Work. To conclude, in this paper, we introduced
the Coconut tool and discussed the usage of templates to define typestates for
objects in C++. Our tool ensures the conformity of the typestate definitions
on objects by conducting a thorough analysis and covering a full spectrum of
programming features to date. We presented the architecture of the tool and
showcased its support for different programming features through case studies
in the embedded systems industry, to introduce and emphasise the importance of
typestate as an approach for validating and verifying such systems. We assessed
the Coconut tool through many tests for Coconut case studies, also we con-
ducted an evaluation study with three benchmarks using four metrics. In future
work, we aim to enhance Coconut by addressing its performance limitations.
Our vision is to transform Coconut into a typestate monitoring tool capable of
processing embedded device data, facilitating evaluation and comparison with
actual embedded systems.

Acknowledgements. Supported by the UK EPSRC New Investigator Award grant
EP/X027309/1 “Uni-pi: safety, adaptability and resilience in distributed ecosystems,
by construction”. Additionally, this work has partial support from the Royal Embassy
of Saudi Arabia Cultural Bureau. We thank Simon Gay for his valuable comments on
the paper.



234 A. H. Alsubhi and O. Dardha

A PillBox Original Implementation

See Figs. 13, 14.

Fig. 13. Code Snippet of PillBox from the original implementation in [12]

Fig. 14. Code Snippet of PillBox 2 from the original implementation in [12]



Coconut: Typestates for Embedded Systems 235

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Design. Cambridge Uni-
versity Press, Cambridge (2010). https://doi.org/10.1017/CBO9781139195881

2. Alagar, V.S., Periyasamy, K.: Extended finite state machine. In: Specification of
Software Systems. Springer, London (2011). https://doi.org/10.1007/978-0-85729-
277-3 7

3. Aldrich, J., et al.: Permission-based programming languages (NIER Track). In:
Proceedings of the 33rd International Conference on Software Engineering (ICSE),
pp. 828–831. ACM (2011). https://doi.org/10.1145/1985793.1985915

4. Arduino: Arduino libraries (2024). https://www.arduino.cc/reference/en/
libraries/

5. Bacchiani, L., Bravetti, M., Giunti, M., Mota, J., Ravara, A.: A Java types-
tate checker supporting inheritance. Sci. Comput. Program. 221, 102844 (2022).
https://doi.org/10.1016/j.scico.2022.102844

6. Bachin, A.: Better enums (2015–2019). http://aantron.github.io/better-enums/
7. Balogh, R., Obdržálek, D.: Using finite state machines in introductory robotics. In:

Lepuschitz, W., Merdan, M., Koppensteiner, G., Balogh, R., Obdržálek, D. (eds.)
RiE 2018. AISC, pp. 85–91. Springer, Cham (2019). https://doi.org/10.1007/978-
3-319-97085-1 9

8. Barr, M.: Programming Embedded Systems in C and C++. O’Reilly (1999)
9. Bierhoff, K., Beckman, N.E., Aldrich, J.: Practical API protocol checking with

access permissions. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
195–219. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03013-
0 10

10. Biffle, C.L.: The Typestate Pattern in Rust (2019). http://cliffle.com/blog/rust-
typestate/

11. Bispo, J., Paulino, N., Sousa, L.M.: Challenges and opportunities in C/C++
source-to-source compilation. In: Bispo, J., Charles, H.P., Cherubin, S., Massari,
G. (eds.) Proceedings of the 14th Workshop on Parallel Programming and Run-
Time Management Techniques for Many-Core Architectures and 12th Workshop
on Design Tools and Architectures for Multicore Embedded Computing Platforms
(PARMA-DITAM 2023). Open Access Series in Informatics (OASIcs), vol. 107,
pp. 2:1–2:15. Schloss Dagstuhl — Leibniz-Zentrum für Informatik (2023). https://
doi.org/10.4230/OASIcs.PARMA-DITAM.2023.2

12. Bombarda, A., Bonfanti, S., Gargantini, A.: Developing medical devices from
abstract state machines to embedded systems: a smart pill box case study. In:
Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019. LNCS,
vol. 11771, pp. 89–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29852-4 7

13. Bonfanti, S., Gargantini, A., Mashkoor, A.: A systematic literature review of the
use of formal methods in medical software systems. J. Softw. Evol. Process 30(5),
e1943 (2018). https://doi.org/10.1002/smr.1943

14. Boost Developers: Boost C++ libraries (Boost.Hana documentation). https://
www.boost.org/doc/libs/1 84 0/libs/hana/doc/html/index.html

15. Boost Developers: Boost C++ libraries (2024). https://www.boost.org/
16. Caminiti, L.: Boost.Contract 1.0.0. https://www.boost.org/doc/libs/1 80 0/libs/

contract/doc/html/index.html (2008–2019)
17. Clark, C., Kappert, E.: Openpyxl — a Python library to read/write Excel 2010

xlsx/xlsm files (2024). https://pypi.org/project/openpyxl/

https://doi.org/10.1017/CBO9781139195881
https://doi.org/10.1007/978-0-85729-277-3_7
https://doi.org/10.1007/978-0-85729-277-3_7
https://doi.org/10.1145/1985793.1985915
https://www.arduino.cc/reference/en/libraries/
https://www.arduino.cc/reference/en/libraries/
https://doi.org/10.1016/j.scico.2022.102844
http://aantron.github.io/better-enums/
https://doi.org/10.1007/978-3-319-97085-1_9
https://doi.org/10.1007/978-3-319-97085-1_9
https://doi.org/10.1007/978-3-642-03013-0_10
https://doi.org/10.1007/978-3-642-03013-0_10
http://cliffle.com/blog/rust-typestate/
http://cliffle.com/blog/rust-typestate/
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2023.2
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2023.2
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1002/smr.1943
https://www.boost.org/doc/libs/1_84_0/libs/hana/doc/html/index.html
https://www.boost.org/doc/libs/1_84_0/libs/hana/doc/html/index.html
https://www.boost.org/
https://www.boost.org/doc/libs/1_80_0/libs/contract/doc/html/index.html
https://www.boost.org/doc/libs/1_80_0/libs/contract/doc/html/index.html
https://pypi.org/project/openpyxl/


236 A. H. Alsubhi and O. Dardha

18. Coblenz, M., et al.: Obsidian: typestate and assets for safer blockchain program-
ming. ACM Trans. Program. Lang. Syst. 42(3) (2020). https://doi.org/10.1145/
3417516

19. DeLine, R., Fähndrich, M.: Enforcing high-level protocols in low-level software.
SIGPLAN Not. 36(5), 59–69 (2001). https://doi.org/10.1145/381694.378811

20. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24851-4 21

21. Driscoll, P.J., Parnell, G.S., Henderson, D.L.: Decision Making in Systems Engi-
neering and Management. Wiley, Hoboken (2022)

22. Estivill-Castro, V., Hexel, R.: Run-time verification of regularly expressed behav-
ioral properties in robotic systems with logic-labeled finite state machines. In: Pro-
ceedings of the IEEE International Conference on Simulation, Modeling, and Pro-
gramming for Autonomous Robots (SIMPAR), pp. 281–288. IEEE (2016), https://
doi.org/10.1109/SIMPAR.2016.7862408

23. Formal Methods and SE Laboratory University of Milan, Formal Methods and
Software Engineering Lab University of Bergamo: Asm2c++ (2006–2022). https://
asmeta.github.io/download/asm2c++.html

24. Formal Methods and SE Laboratory University of Milan, Formal Methods and
Software Engineering Lab University of Bergamo: Asmeta framework (2006–2022).
https://asmeta.github.io/

25. Giampaolo, F.: psutil (2024). https://pypi.org/project/psutil/
26. Giftthaler, M., Neunert, M., Stäuble, M., Buchli, J.: The control toolbox — an

open-source C++ library for robotics, optimal and model predictive control. In:
Proceedings of the IEEE International Conference on Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR), pp. 123–129. IEEE (2018).
https://doi.org/10.1109/SIMPAR.2018.8376281

27. Graphviz Team: Graphviz (2021). https://www.graphviz.org/
28. Gregor, D., Järvi, J.: Variadic templates for C++. In: Proceedings of the ACM

Symposium on Applied Computing (SAC), pp. 1101–1108. ACM (2007). https://
doi.org/10.1145/1244002.1244243

29. Hoang, T.S., Snook, C., Ladenberger, L., Butler, M.: Validating the requirements
and design of a hemodialysis machine using iUML-B, BMotion studio, and co-
simulation. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 360–375. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33600-8 31

30. Hu, Y., et al.: Decision-making system based on finite state machine for low-speed
autonomous vehicles in the park. In: IEEE International Conference on Real-time
Computing and Robotics (RCAR), pp. 721–726 (2022). https://doi.org/10.1109/
RCAR54675.2022.9872208

31. Hwang, S., Lee, K., Jeon, H., Kum, D.: Autonomous vehicle cut-in algorithm
for lane-merging scenarios via policy-based reinforcement learning nested within
finite-state machine. IEEE Trans. Intell. Transp. Syst. 23(10), 17594–17606 (2022).
https://doi.org/10.1109/TITS.2022.3153848

32. Jakobsen, M., Ravier, A., Dardha, O.: Papaya: global typestate analysis of aliased
objects. In: Proceedings of the 23rd International Symposium on Principles and
Practice of Declarative Programming (PPDP). ACM (2021). https://doi.org/10.
1145/3479394.3479414

33. Kitware Inc.: Cmake (2024). https://cmake.org/

https://doi.org/10.1145/3417516
https://doi.org/10.1145/3417516
https://doi.org/10.1145/381694.378811
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1109/SIMPAR.2016.7862408
https://doi.org/10.1109/SIMPAR.2016.7862408
https://asmeta.github.io/download/asm2c++.html
https://asmeta.github.io/download/asm2c++.html
https://asmeta.github.io/
https://pypi.org/project/psutil/
https://doi.org/10.1109/SIMPAR.2018.8376281
https://www.graphviz.org/
https://doi.org/10.1145/1244002.1244243
https://doi.org/10.1145/1244002.1244243
https://doi.org/10.1007/978-3-319-33600-8_31
https://doi.org/10.1007/978-3-319-33600-8_31
https://doi.org/10.1109/RCAR54675.2022.9872208
https://doi.org/10.1109/RCAR54675.2022.9872208
https://doi.org/10.1109/TITS.2022.3153848
https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1145/3479394.3479414
https://cmake.org/


Coconut: Typestates for Embedded Systems 237

34. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo. In: Proceedings of the 18th International Symposium on
Principles and Practice of Declarative Programming (PPDP), pp. 146–159. ACM
(2016). https://doi.org/10.1145/2967973.2968595

35. Kumar, B.: A survey of key factors affecting software maintainability. In: Proceed-
ings of the International Conference on Computing Sciences, pp. 261–266 (2012).
https://doi.org/10.1109/ICCS.2012.5

36. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994). https://doi.org/10.1145/197320.197383

37. LLVM Developer Group: libclang-17-dev: Development package for Clang (2024).
https://packages.debian.org/search?keywords=libclang-17-dev

38. Mayr, M., Salt-Ducaju, J.M.: A C++ implementation of a cartesian impedance
controller for robotic manipulators (2022)

39. McKinney, W., et al.: pandas: powerful Python data analysis toolkit (2024).
https://pandas.pydata.org/

40. Militão, F., Aldrich, J., Caires, L.: Substructural typestates. In: Proceedings of the
ACM SIGPLAN Workshop on Programming Languages Meets Program Verifica-
tion (PLPV), pp. 15–26. ACM (2014). https://doi.org/10.1145/2541568.2541574

41. Mota, J., Giunti, M., Ravara, A.: Java typestate checker. In: Damiani, F., Dardha,
O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 121–133. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-78142-2 8

42. Oliveira, M.F., Redin, R.M., Carro, L., Lamb, L.D.C., Wagner, F.R.: Software
quality metrics and their impact on embedded software. In: Proceedings of the
5th International Workshop on Model-based Methodologies for Pervasive and
Embedded Software (MOMPES), pp. 68–77. IEEE (2008). https://doi.org/10.
1109/MOMPES.2008.11

43. Porkoláb, Z., Mihalicza, J., Sipos, A.: Debugging C++ template metaprograms.
In: Proceedings of the 5th International Conference on Generative Programming
and Component Engineering (GPCE), pp. 255–264. ACM (2006). https://doi.org/
10.1145/1173706.1173746

44. Python Software Foundation: time — time access and conversions (2024). https://
docs.python.org/3/library/time.html

45. Redin, R.M., et al.: On the use of software quality metrics to improve physical
properties of embedded systems. In: Kleinjohann, B., Wolf, W., Kleinjohann, L.
(eds.) DIPES 2008. ITIFIP, vol. 271, pp. 101–110. Springer, Boston (2008). https://
doi.org/10.1007/978-0-387-09661-2 10

46. Reis, G.D., J. D. Garcia, J. Lakos, A.M., N. Myers, B.S.: Support for contract
based programming in C++ (2018). https://open-std.org/JTC1/SC22/WG21/
docs/papers/2018/p0542r5.html

47. Rust Language: The Embedded Rust Book (2018). https://docs.rust-
embedded.org/book/static-guarantees/typestate-programming.html#typestate-
programming

48. Sherman, T.: Quality attributes for embedded systems. In: Sobh, T. (ed.) Advances
in Computer and Information Sciences and Engineering, pp. 536–539. Springer,
Dordrecht (2008). https://doi.org/10.1007/978-1-4020-8741-7 95

49. Šimoňák, S.: Verification of communication protocols based on formal methods
integration. Acta Polytechnica Hungarica 9(4), 117–128 (2012). http://acta.uni-
obuda.hu/Simonak 36.pdf

50. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. SE-12(1), 157–171 (1986). https://
doi.org/10.1109/TSE.1986.6312929

https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1109/ICCS.2012.5
https://doi.org/10.1145/197320.197383
https://packages.debian.org/search?keywords=libclang-17-dev
https://pandas.pydata.org/
https://doi.org/10.1145/2541568.2541574
https://doi.org/10.1007/978-3-030-78142-2_8
https://doi.org/10.1109/MOMPES.2008.11
https://doi.org/10.1109/MOMPES.2008.11
https://doi.org/10.1145/1173706.1173746
https://doi.org/10.1145/1173706.1173746
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html
https://doi.org/10.1007/978-0-387-09661-2_10
https://doi.org/10.1007/978-0-387-09661-2_10
https://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0542r5.html
https://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p0542r5.html
https://docs.rust-embedded.org/book/static-guarantees/typestate-programming.html#typestate-programming
https://docs.rust-embedded.org/book/static-guarantees/typestate-programming.html#typestate-programming
https://docs.rust-embedded.org/book/static-guarantees/typestate-programming.html#typestate-programming
https://doi.org/10.1007/978-1-4020-8741-7_95
http://acta.uni-obuda.hu/Simonak_36.pdf
http://acta.uni-obuda.hu/Simonak_36.pdf
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929


238 A. H. Alsubhi and O. Dardha

51. Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, E.: First-class state change
in plaid. In: Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA), pp. 713–732. ACM
(2011). https://doi.org/10.1145/2048066.2048122

52. TIOBE: TIOBE Index (2000–2023). https://www.tiobe.com/tiobe-index//
53. Tolmer, V.: Protenc library (2019). https://github.com/nitnelave/ProtEnc
54. Wang, J., Tepfenhart, W.: Formal Methods in Computer Science. Chapman and

Hall/CRC (2019). https://doi.org/10.1201/9780429184185
55. Xiao, X., Balakrishnan, G., Ivančić, F., Maeda, N., Gupta, A., Chhetri, D.: Arc++:

effective typestate and lifetime dependency analysis. In: Proceedings of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA), pp. 116–126. ACM
(2014). https://doi.org/10.1145/2610384.2610395

56. Yin, T.: Lizard: an extensible cyclomatic complexity analyzer (2024). https://pypi.
org/project/lizard/1.8.7/

https://doi.org/10.1145/2048066.2048122
https://www.tiobe.com/tiobe-index//
https://github.com/nitnelave/ProtEnc
https://doi.org/10.1201/9780429184185
https://doi.org/10.1145/2610384.2610395
https://pypi.org/project/lizard/1.8.7/
https://pypi.org/project/lizard/1.8.7/

	Coconut: Typestates for Embedded Systems
	1 Introduction
	2 The Coconut Tool
	2.1 Integration, Compatibility, and Usage
	2.2 System Overview
	2.3 Templates and State Management in Coconut
	2.4 Static and Dynamic Analysis in Coconut

	3 PillBox Case Study
	3.1 PillBox Original vs Coconut Version
	3.2 Discussion of Programming Features
	3.3 Coconut vs. State-of-the-Art Typestate-Based Tools

	4 Evaluation Study
	5 Conclusion, Related and Future Work
	A PillBox Original Implementation
	References


