
Capable GV: Capabilities for Session Types in GV

Magdalena J. Latifa1 and Ornela Dardha1

1 University of Glasgow
2398248L@student.gla.ac.uk

2 University of Glasgow
ornela.dardha@glasgow.ac.uk

Abstract

This is an ongoing work which introduces Capable GV (CGV), a functional calculus
with binary session types that utilises capabilities. Capabilities split channels into a linear
capability and an unrestricted endpoint, thus allowing channel sharing. Consequently,
CGV enjoys greater expressivity and allows cyclic processes at the cost of losing deadlock
freedom, which we aim to restore using priorities as in works by Kokke and Dardha [5, 4].

1 Introduction

Good Variation (GV) is a functional calculus with binary session types that allows protocol-
following concurrent communication and was originally introduced by Wadler [8]. Since then,
many extensions to GV have been developed, including Exceptional GV [3], Priority GV [5]
and Hypersequent GV [2], with the aim of improving its expressivity and guarantees while
taking advantage of the benefits that GV provides: higher-order functions, separation of run-
time configuration and a more natural fit for implementations. Capabilities [7] are a method of
allowing channel sharing. This method relies on splitting channels into two disjoint components,
which allows channels to be safely shared. In this work, we develop an extension to GV that
allows channel sharing, consequently improving the expressivity of the system.

2 Capable GV

We present the statics of Capable GV (CGV), a GV-based functional language with share-
able session types. Channel sharing in CGV is achieved by introducing unrestricted channel
endpoints and linear capabilities that are managed by a flow-sensitive type-and-effect system.
As linearity is enforced via capabilities, sharing does not violate communication safety. While
CGV allows for greater expressivity, it comes at the cost of deadlock-freedom as the system
allows cyclic processes. CGV types are defined by the following grammar:

S ::= !T.S | ?T.S | end
T ,U ::= T × U | T + U | 1 | tr(ρ) | [ρ(S)] | T (C1)⊸ (C2) U
Γ,∆ ::= ∅ | Γ, x : T

C ::= ∅ | C ⊗ ρ(S)

Constructs tr(ρ) and ρ(S) are the core of CGV and represent the separation of the channel
endpoint and the capability of using it. Tracked type tr(ρ) specifies that the channel endpoint
is controlled by capability ρ. Capability ρ exists in a capability set C in the form ρ(S) which
specifies the channel’s session type S. Additionally, a capability can be packed into a pack type
[ρ(S)] and subsequently relayed to another thread. In order to accommodate for capabilities
in the type-and-effect system, functions have the type T (C1)⊸ (C2) U which denotes a linear

Capable GV M.J. Latifa, O. Dardha

function T ⊸ U where the function body requires pre-evaluation capability set C1 and produces
capability set C2 when evaluated. The remaining types are standard session types or linear λ-
calculus types.

CGV terms are defined by the following grammar:

V ,W ::= () | x | λx.M | (V,W) | inl V | inr V
L,M,N ::= V W | let x=M in N | let (x, y) = V in M | let () = V in M

| case L {inl x 7→ M ; inr y 7→ N} | return V
| new | send V | recv V | close V | pack V | unpack V | spawn M N

Terms pack V and unpack V are unique to CGV and allow “inactivating” and “reactivating”
channels by packing and unpacking capabilities. Terms send V and recv V are standard to
GV but they no longer return a copy of the channel since channels are unrestricted. Terms
close V , new and spawn M N are analogous to Priority GV’s terms [5] with the change of
new also creating capabilities for the new channels and spawn requiring a packed capability to
initialise the newly spawned thread with. The rest of the terms are standard linear λ-calculus
terms.

Typing rules T-Recv and T-Pack demonstrate the behaviour of capabilities in CGV. For T-
Recv, in order to receive a message of type T on a channel of type tr(ρ), the capability of using
the endpoint ρ(?T.S) needs to be in the pre-evaluation capability set. After this communication
takes place, the capability must update the session type; hence the post-evaluation capability
set must contain the capability in the form ρ(S). T-Pack specifies the behaviour of packing the
capability in order to relay it to another thread. In order to pack the capability of channel of
type tr(ρ), the capability ρ(S) needs to be in the pre-evaluation capability set. After the channel
is packed, the capability ρ(S) is removed from the capability set and is instead “inactivated”
and expressed in the pack type [ρ(S)]. The session type of this channel cannot change until the
capability is unpacked and the channel becomes active again, which is key to ensuring linearity
of communication.

T-Recv
Γ ⊢ V : tr(ρ)

Γ;C ⊗ ρ(?T.S) ⊢ recv V : T ▷ C ⊗ ρ(S)

T-Pack
Γ ⊢ V : tr(ρ)

Γ;C ⊗ ρ(S) ⊢ pack V : [ρ(S)] ▷ C

3 Conclusions and Future Work

We have presented our work in progress on CGV—Capable GV. At the time of writing, we have
completed syntax of types and terms as well as typing rules and we are working on finalising
the operational semantics and type safety results. CGV uses capabilities in order to introduce
channel sharing and provide greater expressivity. This is achieved via tracking capabilities in
a type-and-effect system and making the channel endpoints unrestricted. While this approach
allows sharing, it also reintroduces deadlocks. Hence, a potential area for further work will be
the combination of CGV with Priority GV [5, 4] to restore deadlock-freedom and tie the system
back to logic. Additionally, we aim to explore channel sharing through different means, namely
via manifest sharing [1].

2

Capable GV M.J. Latifa, O. Dardha

References

[1] Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest deadlock-freedom for shared
session types. In Programming Languages and Systems - 28th European Symposium on Program-
ming, ESOP 2019, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume 11423 of
Lecture Notes in Computer Science, pages 611–639. Springer, 2019.

[2] Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris. Separating sessions
smoothly. In 32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-
27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 36:1–36:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

[3] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous session
types: session types without tiers. Proc. ACM Program. Lang., 3(POPL):28:1–28:29, 2019.

[4] Wen Kokke and Ornela Dardha. Deadlock-free session types in linear haskell. In Haskell 2021:
Proceedings of the 14th ACM SIGPLAN International Symposium on Haskell, Virtual Event, Korea,
August 26-27, 2021, pages 1–13. ACM, 2021.

[5] Wen Kokke and Ornela Dardha. Prioritise the best variation. In Formal Techniques for Distributed
Objects, Components, and Systems - 41st IFIP WG 6.1 International Conference, FORTE 2021,
Held as Part of the 16th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings, volume 12719 of Lecture Notes in
Computer Science, pages 100–119. Springer, 2021.

[6] Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.

[7] A. Laura Voinea, Ornela Dardha, and Simon J. Gay. Resource sharing via capability-based mul-
tiparty session types. In Integrated Formal Methods - 15th International Conference, IFM 2019,
Bergen, Norway, December 2-6, 2019, Proceedings, volume 11918 of Lecture Notes in Computer
Science, pages 437–455. Springer, 2019.

[8] Philip Wadler. Propositions as sessions. In ACM SIGPLAN International Conference on Functional
Programming, ICFP’12, Copenhagen, Denmark, September 9-15, 2012, pages 273–286. ACM, 2012.

A Context Split

Typing environments can be split according to rules in Figure 1 analogously to the work done
by Vasconcelos [6].

That allows all channels to be unrestricted while preserving linearity for everything else.

∅ = ∅ ◦∅
Γ = Γ1 ◦ Γ2 T = tr(ρ)

Γ, x : T = (Γ1, x : T) ◦ (Γ2, x : T)

Γ = Γ1 ◦ Γ2

Γ, x : T = (Γ1, x : T) ◦ Γ2

Γ = Γ1 ◦ Γ2

Γ, x : T = Γ1 ◦ (Γ2, x : T)

Figure 1: Context split.

3

Capable GV M.J. Latifa, O. Dardha

B Static Typing Rules

Full static typing rules are presented in Figure 3 and Figure 3.

Values typing judgements

Typing judgements for values are of the form

Γ ⊢ V : T

which states that Under typing environment Γ, term V is of type T .

Computations typing judgements

Typing judgements for computations are of the form

Γ;C ⊢ M : T ▷ C ′

which states that Under typing environment Γ and with capability set C, term M is of type T
and produces capability set C ′.

T-Var

x : T ⊢ x : T

T-Unit

∅ ⊢ () : 1

T-Lam
Γ, x : T ;C ⊢ M : U ▷ C ′

Γ ⊢ λx.M : T (C)⊸ (C ′) U

T-PairVal
Γ ⊢ V : T ∆ ⊢ W : U

Γ ◦∆ ⊢ (V,W) : T × U

T-Inl
Γ ⊢ V : T

Γ ⊢ inl V : T + U

T-Inr
Γ ⊢ V : U

Γ ⊢ inr V : T + U

Figure 2: Static Typing Rules for Values.

4

Capable GV M.J. Latifa, O. Dardha

T-App
Γ ⊢ V : T (C)⊸ (C ′) U ∆ ⊢ W : T

Γ ◦∆;C ⊢ V W : U ▷ C ′

T-Return
Γ ⊢ V : T

Γ;C ⊢ return V : T ▷ C ′

T-LetUnit
Γ ⊢ V : 1 ∆;C ⊢ M : T ▷ C ′

Γ ◦∆;C ⊢ let () = V in M : T ▷ C ′

T-LetPair
Γ ⊢ V : T × T ′ ∆, x : T , y : T ′;C ⊢ M : U ▷ C ′

Γ ◦∆;C ⊢ let (x, y) = V in M : U ▷ C ′

T-LetBind
Γ;C ⊢ M : T ▷ C ′ ∆, x : T ;C ′ ⊢ N : U ▷ C ′′

Γ ◦∆;C ⊢ let x=M in N : U ▷ C ′′

T-CaseSum
Γ ⊢ L : T + T ′ ∆, x : T ;C ⊢ M : U ▷ C ′ ∆, y : T ′;C ⊢ N : U ▷ C ′

Γ ◦∆;C ⊢ case L {inl x 7→ M ; inr y 7→ N} : U ▷ C ′

T-New

∅;C ⊢ new : tr(ρ)× tr(ρ′) ▷ C ⊗ ρ(S)⊗ ρ′(S)

T-Spawn
Γ;C ⊢ M : [ρ(S)] ▷ C ′ ∆; ρ(S) ⊢ N : 1 ▷∅

Γ ◦∆;C ⊢ spawn MN : 1 ▷ C ′

T-Close
Γ ⊢ V : tr(ρ)

Γ;C ⊗ ρ(end) ⊢ close V : 1 ▷ C

T-Send
Γ ⊢ V : T × tr(ρ)

Γ;C ⊗ ρ(!T.S) ⊢ send V : 1 ▷ C ⊗ ρ(S)

T-Recv
Γ ⊢ V : tr(ρ)

Γ;C ⊗ ρ(?T.S) ⊢ recv V : T ▷ C ⊗ ρ(S)

T-Pack
Γ ⊢ V : tr(ρ)

Γ;C ⊗ ρ(S) ⊢ pack V : [ρ(S)] ▷ C

T-Unpack
Γ ⊢ V : [ρ(S)]

Γ;C ⊢ unpack V : 1 ▷ C ⊗ ρ(S)

Figure 3: Static Typing Rules for Computations.

5

	Introduction
	Capable GV
	Conclusions and Future Work
	Context Split
	Static Typing Rules

